特色查询
TDengine 在支持标准 SQL 的基础之上,还提供了一系列满足时序业务场景需求的特色查询语法,这些语法能够为时序场景的应用的开发带来极大的便利。
TDengine 提供的特色查询包括数据切分查询和时间窗口切分查询。
数据切分查询
当需要按一定的维度对数据进行切分然后在切分出的数据空间内再进行一系列的计算时使用数据切分子句,数据切分语句的语法如下:
PARTITION BY part_list
part_list 可以是任意的标量表达式,包括列、常量、标量函数和它们的组合。例如,将数据按标签 location 进行分组,取每个分组内的电压平均值:
select location, avg(voltage) from meters partition by location
TDengine 按如下方式处理数据切分子句:
- 数据切分子句位于 WHERE 子句之后。
- 数据切分子句将表数据按指定的维度进行切分,每个切分的分片进行指定的计算。计算由之后的子句定义(窗口子句、GROUP BY 子句或 SELECT 子句)。
- 数据切分子句可以和窗口切分子句(或 GROUP BY 子句)一起使用,此时后面的子句作用在每个切分的分片上。例如,将数据按标签 location 进行分组,并对每个组按 10 分钟进行降采样,取其最大值。
select _wstart, location, max(current) from meters partition by location interval(10m)
数据切分子句最常见的用法就是在超级表查询中,按标签将子表数据进行切分,然后分别进行计算。特别是 PARTITION BY TBNAME 用法,它将每个子表的数据独立出来,形成一条条独立的时间序列,极大的方便了各种时序场景的统计分析。例如,统计每个电表每 10 分钟内的电压平均值:
select _wstart, tbname, avg(voltage) from meters partition by tbname interval(10m)
窗口切分查询
TDengine 支持按时间窗口切分方式进行聚合结果查询,比如温度传感器每秒采集一次数据,但需查询每隔 10 分钟的温度平均值。这种场景下可以使用窗口子句来获得需要的查询结果。窗口子句用于针对查询的数据集合按照窗口切分成为查询子集并进行聚合,窗口包含时间窗口(time window)、状态窗口(status window)、会话窗口(session window)、事件窗口(event window)、计数窗口(count window)五种窗口。其中时间窗口又可划分为滑动时间窗口和翻转时间窗口。
窗口子句语法如下:
window_clause: {
SESSION(ts_col, tol_val)
| STATE_WINDOW(col)
| INTERVAL(interval_val [, interval_offset]) [SLIDING (sliding_val)] [FILL(fill_mod_and_val)]
| EVENT_WINDOW START WITH start_trigger_condition END WITH end_trigger_condition
| COUNT_WINDOW(count_val[, sliding_val])
}
其中,interval_val 和 sliding_val 都表示时间段,interval_offset 表示窗口偏移量,interval_offset 必须小于 interval_val,语法上支持三种方式,举例说明如下:
- INTERVAL(1s, 500a) SLIDING(1s), 自带时间单位的形式,其中的时间单位是单字符表示, 分别为: a (毫秒), b (纳秒), d (天), h (小时), m (分钟), n (月), s (秒), u (微秒), w (周), y (年).
- INTERVAL(1000, 500) SLIDING(1000), 不带时间单位的形式,将使用查询库的时间精度作为默认时间单位,当存在多个库时默认采用精度更高的库.
- INTERVAL('1s', '500a') SLIDING('1s'), 自带时间单位的字符串形式,字符串内部不能有任何空格等其它字符.